A Partitioning Scheme for Solving the 0-1 Knapsack Problem

نویسنده

  • M. F. KRUGER
چکیده

The application of valid inequalities to provide relaxations which can produce tight bounds, is now common practice in Combinatorial Optimisation. This paper attempts to complement current theoretical investigations in this regard. We experimentally search for "valid" equalities which have the potential of strengthening the problem's formulation. Recently, Martello and Toth [13] included cardinality constraints to derive tight upper bounds for the 0-1 Knapsack Problem. Encouraged by their results, we partition the search space by using equality cardinality constraints. Instead of solving the original problem, an equivalent problem, which consists of one or more 0-1 Knapsack Problem with an exact cardinality bound, is solved. By explicitly including a bound on the cardinality, one is able to reduce the size of each subproblem and compute tight upper bounds. Good feasible solutions found along the way are employed to reduce the computational effort by reducing the number of trees searched and the size of the subsequent search trees. We give a brief description of two Lagrangian-based Branch-and-Bound algorithms proposed in Kruger [9] for solving the exact cardinality bounded subproblems and report on results of numerical experiments with a sequential implementation. Implications for and strategies towards parallel implementation are also given.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An employee transporting problem

An employee transporting problem is described and a set partitioning model is developed. An investigation of the model leads to a knapsack problem as a surrogate problem. Finding a partition corresponding to the knapsack problem provides a solution to the problem. An exact algorithm is proposed to obtain a partition (subset-vehicle combination) corresponding to the knapsack solution. It require...

متن کامل

A dynamic programming approach for solving nonlinear knapsack problems

Nonlinear Knapsack Problems (NKP) are the alternative formulation for the multiple-choice knapsack problems. A powerful approach for solving NKP is dynamic programming which may obtain the global op-timal solution even in the case of discrete solution space for these problems. Despite the power of this solu-tion approach, it computationally performs very slowly when the solution space of the pr...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

An exact approach for the 0-1 knapsack problem with setups

We consider the 0–1 Knapsack Problem with Setups. We propose an exact approach which handles the structure of the ILP formulation of the problem. It relies on partitioning the variables set into two levels and exploiting this partitioning. The proposed approach favorably compares to the algorithms in literature and to solver CPLEX 12.5 applied to the ILP formulation. It turns out to be very eff...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004